

Implements: Pythonic Interfaces

	Release

	0.2

	Date

	May 16, 2020

	Implements
	Install

	Advantages

	Usage

	Justification

	Credit

	Test

	License

Indices and tables

	Index

	Module Index

	Search Page

Implements

[image: Build Status]
 [https://travis-ci.org/ksindi/ksindi/implements][image: PyPI Version]
 [https://pypi.python.org/pypi/implements]Pythonic interfaces using decorators

Install

Implements is available on PyPI and can be installed with pip [https://pip.pypa.io]:

pip install implements

Note Python 3.6+ is required as it relies on new features of inspect module.

Advantages

	Favor composition over inheritance [https://en.wikipedia.org/wiki/Composition_over_inheritance].

	Inheriting from multiple classes can be problematic, especially when the superclasses have the same method name but different signatures. Implements will throw a descriptive error if that happens to ensure integrity of contracts.

	The decorators are evaluated at import time. Any errors will be raised then and not when an object is instantiated or a method is called.

	It’s cleaner. Using decorators makes it clear we want share behavior. Also, arguments are not allowed to be renamed.

	Codebase is tiny: you can just copy the file over. This repo exists more for test coverage.

Usage

from implements import Interface, implements

class Duck:
 def __init__(self, age):
 self.age = age

class Flyable(Interface):
 @staticmethod
 def migrate(direction):
 pass

 def fly(self) -> str:
 pass

class Quackable(Interface):
 def fly(self) -> bool:
 pass

 def quack(self):
 pass

@implements(Flyable)
@implements(Quackable)
class MallardDuck(Duck):
 def __init__(self, age):
 super(MallardDuck, self).__init__(age)

 def migrate(self, dir):
 return True

 def fly(self):
 pass

The above would throw the following errors:

NotImplementedError: 'MallardDuck' must implement method 'fly((self) -> bool)' defined in interface 'Quackable'
NotImplementedError: 'MallardDuck' must implement method 'quack((self))' defined in interface 'Quackable'
NotImplementedError: 'MallardDuck' must implement method 'migrate((direction))' defined in interface 'Flyable'

You can find a more detailed example in example.py and by looking at tests.py.

Justification

There are currently two idiomatic ways to rewrite the above example.

The first way is to write base classes with mixins raising NotImplementedError in each method.

class Duck:
 def __init__(self, age):
 self.age = age

class Flyable:
 @staticmethod
 def migrate(direction):
 raise NotImplementedError("Flyable is an abstract class")

 def fly(self) -> str:
 raise NotImplementedError("Flyable is an abstract class")

class Quackable:
 def fly(self) -> bool:
 raise NotImplementedError("Quackable is an abstract class")

 def quack(self):
 raise NotImplementedError("Quackable is an abstract class")

class MallardDuck(Duck, Quackable, Flyable):

 def __init__(self, age):
 super(MallardDuck, self).__init__(age)

 def migrate(self, dir):
 return True

 def fly(self):
 pass

But there are a couple drawbacks implementing it this way:

	We would only get a NotImplementedError when calling quack which can happen much later during runtime. Also, raising NotImplementedError everywhere looks clunky.

	It’s unclear without checking each parent class where super is being called.

	Similarly the return types of fly in Flyable and Quackable are different. Someone unfamiliar with Python would have to read up on Method Resolution Order [https://www.python.org/download/releases/2.3/mro/].

	The writer of MallardDuck made method migrate an instance method and renamed the argument to dir which is confusing.

	We really want to be differentiating between behavior and inheritance.

The advantage of using implements is it looks cleaner and you would get errors at import time instead of when the method is actually called.

Another way is to use abstract base classes from the built-in abc module:

from abc import ABCMeta, abstractmethod, abstractstaticmethod

class Duck(metaclass=ABCMeta):
 def __init__(self, age):
 self.age = age

class Flyable(metaclass=ABCMeta):
 @abstractstaticmethod
 def migrate(direction):
 pass

 @abstractmethod
 def fly(self) -> str:
 pass

class Quackable(metaclass=ABCMeta):
 @abstractmethod
 def fly(self) -> bool:
 pass

 @abstractmethod
 def quack(self):
 pass

class MallardDuck(Duck, Quackable, Flyable):
 def __init__(self, age):
 super(MallardDuck, self).__init__(age)

 def migrate(self, dir):
 return True

 def fly(self):
 pass

Using abstract base classes has the advantage of throwing an error earlier
on instantiation if a method is not implemented; also, there are static analysis
tools that warn if two methods have different signatures. But it doesn’t solve
issues 2-4 and implements will throw an error even earlier in import.
It also in my opinion doesn’t look pythonic.

Credit

Implementation was inspired by a PR [https://github.com/pmatiello/python-interface/pull/1/files] of @elifiner.

Test

Running unit tests:

make test

Running linter:

make lint

Running tox:

make test-all

License

Apache License v2

Index

 nav.xhtml

 Table of Contents

 		
 Implements: Pythonic Interfaces

 		
 Implements

 		
 Install

 		
 Advantages

 		
 Usage

 		
 Justification

 		
 Credit

 		
 Test

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

